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 A B S T R A C T

Behavioral contagion, the process by which individuals adopt behaviors from neighbors, plays a critical role in 
crowd evacuations by shaping collective decision-making and movement patterns. Despite its observable and 
tractable nature compared to emotional contagion, however, behavioral contagion remains underexplored in 
crowd models, with its propagation mechanisms and effects on evacuation dynamics yet to be systematically 
explored. To address these gaps, we propose a behavioral contagion-based social force model (BC-SFM) that 
explicitly couples contagion mechanisms with movement behaviors. Numerical simulations show that BC-
SFM outperforms the classical SFM by enabling faster and more synchronized changes in escape behaviors, 
highlighting the performance superiority of our model in characterizing behavioral contagion dynamics. The 
intensity and heterogeneity of interaction radius and response threshold jointly determine the spatial–temporal 
dynamics of behavioral contagion, with their effects also varying across different crowd densities. Moreover, 
four typical contagion mechanisms, shaped by distinct combinations of perceptual capacity and individual 
responsiveness, significantly affect evacuation dynamics, particularly in terms of efficiency and congestion. 
These findings demonstrate the pivotal impact of behavioral contagion on emergent evacuation outcomes, 
offering theoretical foundations for advancing predictive models and adaptive management strategies.
1. Introduction

With the growing size and frequency of mass events in urban envi-
ronments, understanding collective human behavior during evacuation 
has become a critical issue in public safety research [1,2]. Over the past 
decades, substantial progress has been made in modeling pedestrian 
dynamics [3–5], including many aspects of decision-making [6], route 
selection [7], and avoidance behavior [8]. These studies have deepened 
our insights into self-organized phenomena [9] and provided valuable 
references for the design and optimization of evacuation strategies [10,
11]. As the realism and complexity of simulation techniques increase, 
researchers have begun to explore higher-order interaction mecha-
nisms, such as decision imitation [12], emotional contagion [13], and 
spontaneous coordination [14]. Among these, behavioral contagion, the 
process by which individuals imitate the actions or behaviors of sur-
rounding neighbors, has received increasing attention as an important 
driver influencing collective behaviors [15,16]. It can trigger synchro-
nized movements, behavioral cascades, or leader-follower structures, 
all of which significantly reshape the spatio-temporal dynamics of 
collective motion [17]. However, behavioral contagion, as a potential 
driver of typical herding behavior, remains insufficiently explored in 
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crowd modeling. The mechanisms of how local contagion dynam-
ics shape collective behavior shifts during evacuation have yet to be 
systematically understood.

As a classical microscopic approach, the social force model (SFM) 
provides a powerful framework to simulate pedestrian motion by mod-
eling self-driven forces, interpersonal interactions, and obstacle avoid-
ance [18,19]. To improve realism, various extensions have been intro-
duced to integrate crucial factors such as visual perception [20,21], 
individual heterogeneity [22,23], and stress variation [24], which have 
significantly enhanced the performance of SFM to reproduce complex 
crowd behaviors and evacuation phenomena. Nevertheless, a universal 
limitation remains: most SFM-based approaches assume that pedes-
trians make decisions independently based on predefined physical or 
cognitive rules, largely ignoring dynamic social influences exerted by 
surrounding individuals [25]. In fact, pedestrians may adjust their 
movement behaviors not only according to environmental cues but also 
in response to the information, actions, or emotional states of nearby 
neighbors [26,27]. This is especially obvious in emergency situations 
where local imitation and peer influence can lead to spontaneous 
behavioral cascades [28]. Therefore, it is important to address this 
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Fig. 1. Illustration of behavioral cascades in an emergency scenario from the film ‘‘Train to Busan’’. (a) Initial stage: Upon noticing a zombie threat in the adjacent 
carriage, a train attendant immediately alerts passengers in the current carriage and initiates an escape behavior. (b) Intermediate stage: As the attendant quickly 
moves through the aisle, nearby passengers begin to respond and follow his behavior. (c) Later stage: The propagation of escape behavior triggers a rapid cascade 
effect among passengers, resulting in large-scale collective evasion throughout the carriage.
limitation to capture the emergent nature and evolving dynamics of 
behavioral change in collective human motion, which enables more 
accurate and responsive simulations of representative patterns during 
real-world evacuation.

In biological and social systems, the cascade effect of behavioral 
change has been widely observed and studied. For mobile animal 
groups, such as flocking birds and schooling fish, individual responses 
to information from nearby neighbors can occur over short timescales
[29], resulting in rapid waves of behavioral contagion [15,30]. Pre-
vious studies have proposed behavioral contagion models to predict 
behavioral cascades and explore the effects of group structures, feed-
back mechanisms, density levels, and movement parameters on their 
emergence [31–34]. However, these models typically either assume 
static interaction networks that neglect individual mobility, or in-
corporate dynamic networks with simplistic motion rules, lacking a 
comprehensive integration of contagion dynamics and movement re-
sponses. For human societies, behavioral cascades are widespread, 
evident in real-world emergencies and frequently portrayed in films and 
media (e.g., the propagation of escape behavior in ‘‘Train to Busan’’, 
see Fig.  1). To better reproduce such collective dynamics, many existing 
studies have combined crowd motion models with emotional contagion 
(i.e., individuals internalize and mimic the emotional states of others), 
whose mechanisms can be basically divided into three categories: group 
statistic [35,36], epidemiological [37–40], dyadic relations [41–43]. 
However, these models are computationally intensive and cumbersome 
due to their reliance on complex state variables, cognitive appraisal 
processes, and intricate transition rules, and are hard to validate in 
large-scale crowd simulations as emotional states are typically latent 
and indirectly inferred [13]. In contrast, behavioral contagion em-
phasizes the direct imitation of observable actions without requiring 
interpretation of emotional states. This offers a more tractable and 
mechanistic approach, with fewer assumptions, to model urgent collec-
tive responses, such as emergency evacuation, where escape behaviors 
can spread rapidly through simple observation of neighbors. Therefore, 
this study considers behavioral contagion as a core driver to construct a 
modeling framework of emergent crowd dynamics during evacuation.

In this paper, we develop a behavioral contagion-based social force 
model (BC-SFM) for the coupling between contagion mechanisms and 
movement behaviors. This model defines interaction radius and re-
sponse threshold as two core parameters to characterize the perception 
and reaction of individuals to surrounding escape behaviors, which 
allows a mechanistic representation of bottom-up contagion processes 
in human crowds. On this basis, a series of numerical simulations 
are designed to systematically investigate the impact of behavioral 
contagion on crowd evacuation. First, the superiority of BC-SFM in 
describing behavioral contagion dynamics is demonstrated by compar-
ing it with SFM in terms of response speed, evacuation efficiency, and 
congestion level. Second, we explore how the intensity and heterogene-
ity of interaction radius and response threshold influence behavioral 
contagion at different crowd densities, respectively. Last, the effects of 
2 
different contagion mechanisms (represented by specific combinations 
of perceptual capacity and individual responsiveness) on evacuation 
dynamics are further analyzed. The corresponding results are expected 
to advance our understanding of contagion mechanisms in human 
crowds and support the development of more realistic and predictive 
evacuation models.

The rest of this paper is organized as follows. Section 2 describes 
the mathematical form of the proposed BC-SFM. Section 3 presents 
numerical simulations to analyze the dynamics of behavioral contagion 
in crowd evacuation. Finally, main conclusions and future prospects are 
summarized in Section 4.

2. Model

In this section, we propose the BC-SFM to couple behavioral con-
tagion with movement dynamics. The former describes how behav-
ioral changes propagate through groups via local interactions, while 
the latter models how pedestrians adjust their motion in response to 
both internal states and external forces. The coupling mechanism is 
a state-dependent motion intent, whereby the contagion state directly 
modulates the input of the movement model.

2.1. Behavioral contagion process

In time-pressured, information-limited emergencies, human behav-
ior can become highly reactive and instinctive, relying heavily on the 
actions of nearby individuals, which resembles the collective escape 
responses observed in animal groups [15]. From this, we construct an 
interaction network by which the behavioral change propagates across 
groups, where nodes represent pedestrians in human crowds, and link 
weights are derived based on the behavior of first responders after an 
initial and spontaneous startle. Empirical evidence has shown that the 
two most predictive features of behavioral response are the logarithm 
of the metric distance between individuals and the ranked angular area 
of the initially startled individual in the visual field of the responding 
individual [15,31]. For simplicity, we only consider the logarithmic 
metric distance since the relative importance of the ranked angular 
area is much weaker. The link weight 𝑤𝑖𝑗 is therefore computed as the 
probability of a behavioral response by pedestrian 𝑖 if pedestrian 𝑗 has 
startled, as given by: 

𝑤𝑖𝑗 =
1

1 + exp
[

−𝛽1 − 𝛽2 log
(

𝑑𝑖𝑗
)] (1)

where intercept 𝛽1 and LMD coefficient 𝛽2 are determined by perform-
ing a logistic regression of experimental observations of first respon-
ders, and 𝑑𝑖𝑗 = ‖

‖

‖

𝐱𝑖 − 𝐱𝑗
‖

‖

‖

 is the Euclidean distance between the positions 
of pedestrians 𝑖 and 𝑗.

Each pedestrian represented by a node in an interaction network 
with link weights 𝑤𝑖𝑗 exists in one of two possible states: susceptible 
and infected. According to a continuous-time variant [34] of the Dodds 
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& Watts model [44], the behavioral contagion process is described as 
follows: A susceptible pedestrian 𝑖, moving with a desired speed 𝑣0𝑖 (𝑡) =
𝑣sus𝑖  in a desired direction 𝐞0𝑖 (𝑡) = 𝐞ori𝑖  toward the original destination, 
receives stochastic activation signals of fixed size 𝑠𝑎 from an infected 
neighbor 𝑗 at a rate 𝜌𝑖𝑗 = 𝜌max𝑤𝑖𝑗 , where 𝜌max is the maximum rate 
of sending activation signals for 𝑤𝑖𝑗 = 1. Note that neighbors are 
determined within a local interaction range of radius 𝑅𝑖, since it has 
shown that the interaction neighborhood in human crowds is not topo-
logical, and can be approximated by a metric neighborhood [45]. The 
stochastic time series 𝑠𝑖𝑗 (𝑡) of activation signal received by pedestrian 𝑖
from an infected neighbor 𝑗 is expressed as follows: 

𝑠𝑖𝑗 (𝑡) =
{

𝑠𝑎, 𝑝𝑎
0, 1 − 𝑝𝑎

(2)

where 𝑝𝑎 = 𝜌𝑖𝑗𝛥𝑡 is the probability of receiving an activation signal per 
numerical time step 𝛥𝑡. The pedestrian integrates the stochastic time 
series of activation signal in the form of exponential decay to update 
its current cumulative signal 𝑆𝑖𝑗 (𝑡): 
𝑑𝑆𝑖 (𝑡)
𝑑𝑡

= −𝛿𝑆𝑖 (𝑡 − 𝛥𝑡) + 1
𝛥𝑡

∑

𝑗
𝑠𝑖𝑗 (𝑡) (3)

where 𝛿 represents a discount factor. Eq. (3) can be rewritten by 
applying a standard Euler discretization: 
𝑆𝑖 (𝑡) = (1 − 𝛿𝛥𝑡)𝑆𝑖 (𝑡 − 𝛥𝑡) +

∑

𝑗
𝑠𝑖𝑗 (𝑡) (4)

Here, each pedestrian has an internal response threshold 𝜃𝑖 reflecting 
the probability of response to neighboring alarms, which implicitly 
represents the degree of hesitation or uncertainty in decision-making. 
If the cumulative signal exceeds this threshold, pedestrian 𝑖 transitions 
to the infected state and escapes with a desired speed 𝑣0𝑖 (𝑡) = 𝑣inf𝑖 , 
aligning its desired direction 𝐞0𝑖 (𝑡) = ⟨𝐞0𝑗 (𝑡)⟩𝑗 with the normalized 
average direction of infected neighbors 𝑗. Once all pedestrians become 
infected, each will revert to the susceptible state and start moving with 
a desired speed 𝑣0𝑖 (𝑡) = 𝑣sus𝑖  in a desired direction 𝐞0𝑖 (𝑡) = 𝐞new𝑖  toward 
the new destination. To clarify the above behavioral contagion process, 
a schematic diagram is illustrated accordingly in Fig.  2.

2.2. Pedestrian movement dynamics

The SFM [19] is used to simulate the movement dynamics of 
pedestrians. The position 𝐱𝑖(𝑡) of pedestrian 𝑖 is updated by: 
𝑑𝐱𝑖 (𝑡)
𝑑𝑡

= 𝐯𝑖 (𝑡) (5)

where the change of velocity 𝐯𝑖(𝑡) is updated by the acceleration 
equation: 

𝑚𝑖
𝑑𝐯𝑖 (𝑡)
𝑑𝑡

= 𝐟𝑖𝑑 +
∑

𝑗(≠𝑖)
𝐟𝑖𝑗 +

∑

𝑊
𝐟𝑖𝑊 (6)

The first term 𝐟𝑖𝑑 is a self-driven force that propels pedestrians 
toward the destination: 

𝐟𝑖𝑑 = 𝑚𝑖
𝑣0𝑖 (𝑡) 𝐞

0
𝑖 (𝑡) − 𝐯𝑖 (𝑡)
𝜏𝑖

(7)

Here, pedestrian 𝑖 of mass 𝑚𝑖 adapts the actual velocity 𝐯𝑖(𝑡) within 
a characteristic time 𝜏𝑖 to move with a desired speed 𝑣0𝑖 (𝑡) in a de-
sired direction 𝐞0𝑖 (𝑡), which are determined by the contagion state 
(i.e., susceptible or infected) of pedestrian 𝑖.

The second term 𝐟𝑖𝑗 is an interaction force with other pedestrians 𝑗: 

𝐟𝑖𝑗 = 𝐴𝑖 exp
[(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

∕𝐵𝑖
]

𝐧𝑖𝑗 + 𝑘𝑔
(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

𝐧𝑖𝑗 + 𝜅𝑔
(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

𝛥𝑣𝑡𝑗𝑖𝐭𝑖𝑗

(8)

where 𝐴𝑖 and 𝐵𝑖 are constants, 𝑟𝑖𝑗 denotes the sum of their radii 𝑟𝑖 and 
𝑟 , and 𝐧  is the normalized vector pointing from pedestrian 𝑗 to 𝑖. 𝑘
𝑗 𝑖𝑗
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Fig. 2. Schematic diagram of the behavioral contagion process. The focal 
susceptible pedestrian (gray) continuously receives activation signals from 
neighboring infected pedestrians (red), which are integrated over time to 
produce a cumulative quantity 𝑆𝑖 (𝑡). At an earlier time 𝑡1, the cumulative 
signal remains below the response threshold. Thus, the focal pedestrian stays 
in the susceptible state and continues moving with its current desired velocity. 
As pedestrians move and their relative positions shift, the received signal 
strengths change dynamically. Eventually, the cumulative signal exceeds the 
response threshold at time 𝑡2, triggering a transition to the infected state. 
The focal pedestrian then updates its desired velocity and adjusts movement 
accordingly. Note that the vector 𝐯0𝑖  of the desired velocity is composed of a 
desired speed 𝑣0𝑖  along a desired direction 𝐞0𝑖 .

and 𝜅 are body elasticity coefficient and sliding friction coefficient, 𝐭𝑖𝑗 is 
the tangential direction, and 𝛥𝑣𝑡𝑗𝑖 is the tangential velocity difference. 
Note that 𝑔(𝑥) is zero if pedestrians 𝑖 and 𝑗 do not touch each other, 
otherwise it equals to the argument 𝑥.

The last term 𝐟𝑖𝑊  is a similar interaction force with wall 𝑊 :

𝐟𝑖𝑊 = 𝐴𝑖 exp
[(

𝑟𝑖 − 𝑑𝑖𝑊
)

∕𝐵𝑖
]

𝐧𝑖𝑊 + 𝑘𝑔
(

𝑟𝑖 − 𝑑𝑖𝑊
)

𝐧𝑖𝑊
− 𝜅𝑔

(

𝑟𝑖 − 𝑑𝑖𝑊
) (

𝐯𝑖 ⋅ 𝐭𝑖𝑊
)

𝐭𝑖𝑊 (9)

where 𝑑𝑖𝑊  is the Euclidean distance to wall 𝑊 , 𝐧𝑖𝑊  is the normalized 
vector perpendicular to it, and 𝐭𝑖𝑊  the direction tangential to it. 

3. Numerical simulations

3.1. Experiment setup

To simulate the behavioral contagion process of evacuated pedestri-
ans, as shown in Fig.  3, we design a T-shaped corridor as the simulation 
scenario. The horizontal branch (40 m × 6 m) is a connecting passage 
leading to two available exits of 2 m width, Exit A (green strip) and 
Exit B (orange strip), located on the left and right sides. The vertical 
branch (10 m × 14 m) serves as the initial area (gray rectangle), where 
pedestrians are uniformly distributed at the start of the simulation. 
Pedestrians should traverse a longer route (left passage of 20 m length) 
if they choose Exit A, but only need to cover a shorter route (right 
passage of 10 m length) to Exit B. Here, a simulation constraint is 
imposed that Exit B is inaccessible (e.g., blocked). To construct limited 
visibility conditions such as in a smoky environment, we assume that 
pedestrians are unaware of this situation until entering the awareness 
area (light orange rectangle) within 2 m of Exit B [19], after which they 
will change their decisions and escape toward Exit A instead.
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Fig. 3. Schematic diagram of the T-shaped corridor. The green and orange 
strips denote Exit A and Exit B, and black bars represent walls. The gray 
rectangle indicates the initial area where pedestrians are uniformly generated, 
and the light orange rectangle marks the awareness area in front of Exit B. The 
green and orange arrows indicate possible escape flows toward Exit A and Exit 
B, respectively.

The parameter settings of this model are described below. For 
behavioral contagion, due to the lack of available human data, param-
eter values are empirically informed by animal experiments [31,34] 
and provide plausible approximations for contagion dynamics. The 
intercept 𝛽1 = −0.271 and LMD coefficient 𝛽2 = −2.737 in the logistic 
regression model are fitted from experimental data. The maximal rate 
𝜌max = 102 s−1 allows the fastest response time to be the order of 
0.01 s (for 𝑤𝑖𝑗 = 1), and therefore the numerical time step is equal to 
𝛥𝑡 = 1∕𝜌max = 0.01 s. Without loss of generality, 𝑠𝑎𝜌max = 1, the size of 
activation signal is set to 𝑠𝑎 = 10−2 if the maximal rate 𝜌max = 102 s−1. 
With the discount factor 𝛿 = 0.1 we have a reasonable decay rate for 
the cumulative signal. For movement dynamics, parameter values are 
taken from the well-established SFM [19], which have been extensively 
applied and validated in numerous studies. The mass and radius of 
pedestrians are set to 𝑚𝑖 = 80 kg and 𝑟𝑖 = 0.25 m, and the characteristic 
time 𝜏𝑖 = 0.5 s is a frequently used estimation. The two constants 
𝐴𝑖 = 2 ⋅ 103 N and 𝐵𝑖 = 0.08 m can well describe the intensity and 
range of repulsive interaction between pedestrians. The body elasticity 
coefficient 𝑘 = 1.2 ⋅ 105 kgs−2 and sliding friction coefficient 𝜅 =
2.4 ⋅105 kgm−1s−1 govern the obstructive effects resulting from physical 
interactions. The values of remaining parameters not mentioned here 
will be given later depending on specific simulation conditions.

3.2. Performance comparison between SFM and BC-SFM

The first part of our simulations aims to validate the performance 
superiority of BC-SFM by comparing it with SFM (the most classical 
crowd motion model). Here, we set up a representative evacuation 
situation in which a total of 𝑁 = 100 pedestrians, randomly generated 
in the initial area, simultaneously perceive a danger signal (e.g., ex-
plosion, earthquake) and move toward the closer Exit B. After a while, 
pedestrians who realize that Exit B is inaccessible (i.e., entering the 
awareness area or being infected by active neighbors) will immediately 
reverse direction and escape toward the more distant Exit A. Given 
that pedestrians exhibit heterogeneity in both psychological and phys-
iological aspects in reality [22,23], it is assumed that the values of 
their desired speeds are randomly sampled from a uniform distribu-
tion 𝑈 (

2 ms−1, 4 ms−1
) and remain consistent in both susceptible and 

infected states (𝑣sus𝑖 = 𝑣inf𝑖 ). For the two key parameters of BC-SFM, 
we set interaction radius 𝑅𝑖 = 1 m and response threshold 𝜃𝑖 = 0.4 as 
an example to reasonably simulate the behavioral contagion process. 
It is worth noting that all simulations for quantitative analysis are 
repeated 50 times to minimize the influence of stochastic fluctuations, 
4 
with identical parameters in SFM and BC-SFM being assigned the same 
values for each corresponding run.

From a qualitative perspective, Fig.  4(a)–(b) display the spatio-
temporal snapshots of the behavioral change process during evacuation 
simulated by SFM and BC-SFM. In the initial stage, both SFM (before 
𝑡 = 6 s) and BC-SFM (before 𝑡 = 4 s) present similar evacuation dynam-
ics. All pedestrians spontaneously start to move upon perceiving the 
danger, while a few individuals at the front of the crowd find that Exit 
B is inaccessible after entering the awareness area, thus promptly redi-
recting their movement direction toward the farther Exit A. However, 
significant differences emerge during the subsequent stages of evacu-
ation. The phenomenon simulated by SFM (after 𝑡 = 12 s) indicates 
that behavioral change is solely triggered by individuals themselves 
upon entering the awareness area, without any propagation effects from 
neighboring individuals. Hence, the spatially localized awareness leads 
to severe delay and congestion near Exit B. In contrast, BC-SFM (after 
𝑡 = 8 s) successfully characterizes the spread of behavioral change 
through local interactions from active neighbors, without the neces-
sity for direct perception. This results in a more rapid and collective 
redirection toward Exit A, thereby alleviating delay and congestion. 
Overall, the behavioral change process during evacuation simulated by 
BC-SFM appears more coordinated and realistic than that of SFM, which 
resembles a behavior where individuals completely distrust the actions 
of active neighbors and rely solely on their own direct awareness to 
make decisions.

To quantitatively demonstrate the performance superiority of our 
model in reflecting behavioral change during evacuation, we provide 
a comprehensive comparison between SFM and BC-SFM across several 
key indicators in Fig.  5. Fig.  5(a) illustrates the distributions of individ-
ual onset 𝑡ons𝑖  (i.e., the activation time at which each pedestrian changes 
behavior) and collective duration 𝑡dur (i.e., the total time span from the 
first to the last behavioral change). BC-SFM exhibits faster and more 
synchronized individual responses, as evidenced by a more concen-
trated distribution of the onset time with lower variability. Meanwhile, 
the collective duration is significantly shorter, implying that the con-
tagion mechanism embedded in BC-SFM effectively reproduces the 
spread of behavioral cascades. However, the broader distributions of 
individual onset and collective duration in SFM indicate that such 
a coordinated shift in group decision cannot be clearly reflected, as 
behavioral change depends purely on direct personal perception. The 
self-triggered (non-propagative) response indirectly leads to substantial 
delays in the overall evacuation time in Fig.  5(b) and extremely high 
congestion levels [46] near Exit B, as shown in Fig.  5(c), while the 
blockage near Exit A is mild due to the staggered arrival of redirected 
pedestrians. Turning to BC-SFM, the rapid transmission of directional 
information relieves the localized flow stagnation in which aware 
pedestrians trying to redirect are obstructed by unaware ones still 
heading toward Exit B. This largely improves the evacuation efficiency 
in Fig.  5(b), but slightly aggravates the congestion level near Exit A in 
Fig.  5(c) due to the closely clustered arrival of redirected pedestrians. 
In summary, these results highlight the unique advantage of BC-SFM 
over traditional models in characterizing the dynamical process of 
behavioral contagion during evacuation.

3.3. Effects of interaction radius and response threshold on behavioral 
contagion

In this section, we are interested in how the two key parameters of 
BC-SFM affect the behavioral adaptation process. We adjust the three 
levels of crowd density by setting the number of pedestrians to 𝑁 = 50
(low density), 𝑁 = 100 (medium density), and 𝑁 = 150 (high den-
sity). The interaction radius 𝑅𝑖 defines the maximum distance within 
which pedestrians can perceive the behavioral states of surrounding 
individuals, that is, those only closer to the focal pedestrian (𝑑𝑖𝑗 < 𝑅𝑖) 
are regarded as its neighbors with social influence [45]. The response 
threshold 𝜃  quantifies the minimum cumulative signals required for 
𝑖
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Fig. 4. Spatio-temporal snapshots of the behavioral change process during evacuation. (a) Simulated by SFM. (b) Simulated by BC-SFM. Pedestrians are represented 
by circles and their trajectories by curves, with gray and red colors indicating states before and after behavioral changes, respectively.
Fig. 5. Quantitative comparison of the simulation performance of SFM and BC-SFM. (a) Box plot of individual onset and collective duration in the behavioral 
change process. (b) Number of remaining pedestrians as a function of time. (c) Spatial characterization of congestion level in the scenario.
a pedestrian to change behavior (𝑆𝑖 > 𝜃𝑖), which means the level of 
activation stimulus the focal pedestrian tolerates before itself being in-
fected. To better understand the direct effects of these two parameters, 
three evaluation indicators are introduced here: First, the infection ratio 
𝑛inf∕𝑁 represents the number of infected pedestrians (i.e., induced by 
behavioral contagion rather than entry into the awareness area) divided 
by the total number of pedestrians, which measures the dominant role 
of contagion in behavioral transition. Second, the average activation 
onset ⟨𝑡ons𝑖

⟩

𝑖 is defined as the average time at which pedestrians first 
change their behaviors, thereby reflecting the propagation speed of be-
havioral change within the crowd. Third, the average body compression 
exerting on each pedestrian per time step is ⟨𝐶𝑖(𝑡)⟩𝑖,𝑡, where 𝐶𝑖(𝑡) =
∑

𝑗
‖

‖

‖

𝐟𝑖𝑗
‖

‖

‖

 is the sum of the contact forces [47] with other individuals 
applied to pedestrian 𝑖 at time 𝑡, and this indicator assesses the intensity 
of crowd pushing during the process of behavioral cascades.

The effects of the intensity levels of interaction radius and response 
threshold on behavioral contagion at different crowd densities are 
investigated in Fig.  6. The interaction radius 𝑅𝑖 is traversed from 
0.5 m to 2.0 m at intervals of 0.15 m, and the response threshold 𝜃𝑖
is sampled from 0 to 2.0 at intervals of 0.2. Fig.  6(a)–(c) demonstrate 
that the infection ratio consistently grows with increasing 𝑅  and 
𝑖

5 
decreasing 𝜃𝑖. A larger 𝑅𝑖 allows pedestrians to access more activated 
neighbors and a lower 𝜃𝑖 reduces the cumulative stimulus required 
for behavioral change, these conditions together facilitate faster and 
more extensive contagion across the crowd. Notably, the infection ratio 
gradually rises under the same parameter conditions as crowd density 
increases from low to high. This is because a higher density enhances 
both the probability of close contacts and the effective number of 
neighbors within an interaction range. The average activation onset 
in Fig.  6(d)–(f) accelerates as 𝑅𝑖 increases and 𝜃𝑖 decreases, denoting 
that pedestrians will respond more quickly if they are affected by more 
neighbors and require less stimulus to be infected. Interestingly, the 
increase in crowd density amplifies the polarization of the average 
activation onset. That is, stronger interpersonal connectivity promotes 
propagation at larger 𝑅𝑖 and lower 𝜃𝑖 by producing faster signal ac-
cumulation, but suppresses propagation at smaller 𝑅𝑖 and higher 𝜃𝑖
by reinforcing locally enclosed structures. In Fig.  6(g)–(i), the average 
body compression peaks near the diagonal region due to behavioral 
synchronization from different mechanisms. If both 𝑅𝑖 and 𝜃𝑖 are lower 
(left-bottom), individuals are highly sensitive and rapidly synchronize 
within their local vicinity, and such rapid local activation leads to 
sudden bursts of movement and intense localized compression even if 
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Fig. 6. Effects of the intensity levels of interaction radius and response threshold on behavioral contagion at different crowd densities. (a)–(c) Infection ratio. 
(d)–(f) Average activation onset. (g)–(i) Average body compression.
their perception ranges are limited. If both 𝑅𝑖 and 𝜃𝑖 are larger (right-
upper), individuals react more slowly, but once activated, the wide 
perception range enables broad coordination, which results in delayed 
yet large-scale synchronization and strong global compression. For non-
diagonal regions, larger 𝑅𝑖 and lower 𝜃𝑖 (right-bottom) facilitate rapid 
and large-scale synchronization, behavioral contagion occurs almost 
immediately once the stimulus appears, this early and global shift 
in group behavior can minimize physical conflicts. The condition of 
lower 𝑅𝑖 and higher 𝜃𝑖 (left-upper) makes behavioral contagion hard 
to initiate and spread sparsely, therefore, the prolonged adaptation 
process dilutes instantaneous conflicts even if congestion remains. It 
can be concluded that the interaction radius and response threshold 
jointly modulate both the temporal efficiency and spatial coordination 
of behavioral contagion.

Due to the diverse characteristics of pedestrians in human crowds, 
the effects of the heterogeneity levels of interaction radius and re-
sponse threshold on behavioral contagion are further explored in Fig. 
7. These two parameters are assumed to follow uniform distributions 
𝑅𝑖 ∼ 𝑈 ((1 − 𝜆𝑅)𝑅̃𝑖, (1 + 𝜆𝑅)𝑅̃𝑖) and 𝜃𝑖 ∼ 𝑈 ((1 − 𝜆𝜃)𝜃𝑖, (1 + 𝜆𝜃)𝜃𝑖), where 
𝑅̃𝑖 = 1.25 m and 𝜃𝑖 = 1.0 are the average values, 𝜆𝑅 and 𝜆𝜃 are 
the heterogeneity levels, ranging from 0 to 1 in increments of 0.1. 
The decreasing 𝜆𝑅 and increasing 𝜆𝜃 lead to a steady growth of the 
infection ratio in Fig.  7(a)–(c) and a tendency for activation onset to 
occur earlier in Fig.  7(d)–(f). A lower 𝜆𝑅 implies that most individuals 
have similar perceptual ranges, and this perceptual uniformity can 
ensure that activation signals are transmitted more continuously among 
individuals and avoid the case where the contagion chain is interrupted 
by isolated ‘‘perceptual blind spots’’. A higher 𝜆  means there are 
𝜃

6 
more ‘‘sensitive individuals’’, who will be activated quickly and act 
as amplifiers to trigger responses in their neighbors, thus forming be-
havioral cascades, and even high-threshold individuals are more likely 
to be activated by the continued stimulus. In addition, the growing 
density level intensifies interpersonal interactions and enhances the 
likelihood of stimulus accumulation across the group, resulting in a 
higher infection ratio under the same heterogeneity settings. However, 
it also makes the delay effect more pronounced (i.e., heterogeneity 
causes individuals with high thresholds or limited perception to be 
activated later), slightly prolonging the average activation onset. Fig. 
7(g)–(i) illustrate how average body compression varies with 𝜆𝑅 and 
𝜆𝜃 across different crowd densities. At low and moderate densities in 
Fig.  7(g)–(h), body compression appears sporadic and weakly struc-
tured, indicating that individual heterogeneity has limited influence 
under relatively sparse conditions. At high density in Fig.  7(i), body 
compression is significantly higher in a certain zone where both 𝜆𝑅
and 𝜆𝜃 are lower (i.e., both 𝑅𝑖 and 𝜃𝑖 are moderate, as shown in the 
center of the diagonal region in Fig.  6). In this case, individuals have 
similar perceptual ranges and responsiveness to activation stimuli, they 
respond in a coordinated yet not overly scattered manner, and the mid-
scale synchronization may cause bursts of movement and exacerbate 
body compression. Outside the left-bottom region, most individuals act 
in a more asynchronous way as either or both heterogeneities increase, 
this disperses the spatio-temporal concentration of behavioral transi-
tions, thereby reducing simultaneous movements and mitigating crowd 
pressure. In summary, these results highlight the key role of individual 
heterogeneity in affecting behavioral contagion and collective patterns 
under different density conditions.
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Fig. 7. Effects of the heterogeneity levels of interaction radius and response threshold on behavioral contagion at different crowd densities. (a)–(c) Infection 
ratio. (d)–(f) Average activation onset. (g)–(i) Average body compression.
3.4. Analysis of evacuation dynamics under different contagion mechanisms

This section is concerned with systematically studying the joint 
effects of perceptual capacity and individual responsiveness on evac-
uation dynamics, two representative intervals are selected for each 
parameter: short-range [0.5 m, 0.8 m] and long-range [1.7 m, 2.0 m]
for interaction radius 𝑅𝑖, and low-threshold [0, 0.4] and high-threshold 
[1.6, 2.0] for response threshold 𝜃𝑖. Accordingly, we construct a sim-
ulation framework based on four typical pedestrian types, which are 
derived from different combinations of interaction radius and response 
threshold. Type 1 (short-range 𝑅𝑖 ∈ [0.5 m, 0.8 m] and low-threshold 
𝜃𝑖 ∈ [0, 0.4]): individuals are characterized by limited perceptual range 
but high responsiveness, making them highly prone to mimic nearby 
behaviors and thus capable of triggering rapid yet localized synchro-
nization. Type 2 (short-range 𝑅𝑖 ∈ [0.5 m, 0.8 m] and high-threshold 𝜃𝑖 ∈
[1.6, 2.0]): individuals exhibit both limited perception and high resis-
tance to activation, often resulting in delayed or suppressed behavioral 
contagion across the group. Type 3 (long-range 𝑅𝑖 ∈ [1.7 m, 2.0 m] and 
low-threshold 𝜃𝑖 ∈ [0, 0.4]): individuals, with extensive perception and 
low activation thresholds, respond simultaneously and rapidly to acti-
vation cues, thereby promoting large-scale and accelerated behavioral 
contagion. Type 4 (long-range 𝑅𝑖 ∈ [1.7 m, 2.0 m] and high-threshold 
𝜃𝑖 ∈ [1.6, 2.0]): individuals combine high perceptual capability with low 
behavioral sensitivity, yielding slightly slower collective responses, but 
once activated, their wide perception promotes broad and coordinated 
synchronization. This framework provides a controlled basis for com-
paratively analyzing the evacuation dynamics under varying conditions 
of perceptual capacity and individual responsiveness.
7 
Fig.  8 displays the spatio-temporal snapshots of the evacuation 
process simulated by BC-SFM under four typical pedestrian types. In 
the early stage (before 𝑡 = 4 s), all types start with the same initial 
distribution (𝑁 = 100), and the individual closest to Exit B acts as an 
initiator of behavioral change upon perceiving danger. However, their 
subsequent collective dynamics diverge markedly due to differences in 
perceptual and responsive traits. Type 2 exhibits the slowest evacuation 
process in Fig.  8(b), the lack of perceptual connectivity and high 
activation thresholds inhibits the spread of behavioral change, resulting 
in prolonged stagnation and inefficient use of the alternative exit. 
The crowd remains clustered near the blocked Exit B for an extended 
period, with little sign of coordination or adaptation. In stark contrast, 
Type 3 achieves the fastest evacuation efficiency in Fig.  8(c). Once a 
few individuals detect the inaccessibility of Exit B, behavioral change 
rapidly propagates across the crowd, and all pedestrians are redirected 
toward Exit A in a highly synchronized manner. The swift and cohesive 
transition reveals the emerging dynamics under broad perceptual range 
and low resistance to activation. Between these two extremes, both 
Types 1 and 4 in Fig.  8(a) and 8(d) present moderate evacuation 
efficiencies, but their spatial patterns have certain differences. In the 
first half of the contagion process (𝑡 = 8 s), the behavioral change in 
Type 1 spreads more rapidly than that in Type 4, because the high 
responsiveness allows quick imitation of nearby activated neighbors. 
Nonetheless, several inactive individuals are visibly trapped within 
clusters of already-activated ones, implying that the contagion remains 
highly localized due to the limited perceptual range. Although the case 
in Type 4 is slower to take effect because of high response thresholds, 
individuals with a wide perception scope enable faster and more co-
herent collective responses. Thus, the contagion process accelerates and 
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Fig. 8. Spatio-temporal snapshots of the evacuation process simulated by BC-SFM. (a) Type 1 (short-range and low-threshold). (b) Type 2 (short-range and high-
threshold). (c) Type 3 (long-range and low-threshold). (d) Type 4 (long-range and high-threshold). Pedestrians are represented by circles and their trajectories 
by curves, with gray and red colors indicating states before and after behavioral changes, respectively.
catches up with that of Type 1, ultimately achieving a more coordinated 
redirection in the latter part of the contagion process (𝑡 = 12 s). To sum 
up, Type 1 enables rapid local reactions but fragmented coordination, 
Type 2 presents the weakest contagion and longest delay, Type 3 
ensures the fastest and most synchronized evacuation, and Type 4 
shows more uniform adaptation with slower initial responses.

To further quantitatively compare the evacuation dynamics across 
four typical pedestrian types, Fig.  9 presents the temporal evolutions 
of infected pedestrians, remaining pedestrians, and congestion level 
at different crowd densities. Fig.  9(a)–(c) plot the number of infected 
pedestrians over time, serving as a proxy of contagion speed. Type 3 
8 
shows the steepest and earliest rising curves, reaching global infection 
rapidly, whereas Type 2 displays the flattest and most delayed growth, 
with curves taking the longest to plateau. Type 1 exhibits a relatively 
faster initial increase, but gradually levels off before reaching full 
saturation. Type 4 has a slower initial rise but the curve grows steadily 
over time, eventually approaching or surpassing Type 1. Notably, as the 
crowd density increases, the differences among the four types become 
more significant. This divergence arises since higher density intensifies 
spatial interference and movement constraints, which hinders infor-
mation transmission for types relying on limited perception or high 
activation thresholds, while amplifying the advantage of those with 
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Fig. 9. Quantitative analysis of the evacuation process for four typical pedestrian types at different crowd densities. (a) Number of infected pedestrians as a 
function of time. (b) Number of remaining pedestrians as a function of time. (c) Average congestion level as a function of time.
broader awareness and lower resistance to activation. The trends of the 
number of remaining pedestrians in Fig.  9(d)–(f) are quite consistent 
with spatio-temporal patterns in Fig.  8. The observed variation in 
evacuation efficiency primarily stems from the contagion dynamics 
in Fig.  9(a)–(c), where faster and more synchronized infection facili-
tates earlier behavioral transitions and more coordinated redirection, 
thereby accelerating the overall evacuation. In addition, the temporal 
evolution of average congestion level is depicted in Fig.  9(g)–(i). Types 
1, 3, and 4 exhibit two-peak structures: an initial peak caused by early 
accumulation near Exit B, followed by a second peak as redirected 
pedestrians converge at Exit A. Here, Type 3 shows the earliest and 
lowest second peak, highlighting that fast and synchronized contagion 
enables pedestrians to shift toward Exit A with minimal delay and 
congestion. Type 4 also achieves a low second peak, though it appears 
later, reflecting a slower initial response but rapid emergence of global 
synchronization once contagion spreads, which promotes coordinated 
flow without abrupt surges. Type 1 presents a higher and delayed 
second peak, as fast but local contagion limits group-level coordination, 
leading to persistent arrivals at Exit A with temporary crowding. A 
notable exception is Type 2, which only displays a single and the 
highest peak among all types. This is because pedestrians mostly gather 
near Exit B for a long time and sluggishly reroute toward Exit A, 
the delayed and uncoordinated shift triggers extreme congestion. The 
peak congestion of Type 2 escalates dramatically as density increases, 
whereas the peaks of Types 1, 3, and 4 rise only slightly, implying their 
greater adaptability to crowded conditions. In essence, the evacuation 
9 
dynamics across the four pedestrian types underscore the key role of 
contagion mechanisms in shaping collective human behavior.

4. Conclusions

In this work, we propose a systematic modeling framework to 
simulate the dynamical process of behavioral contagion in human 
crowds during evacuation. By incorporating contagion dynamics into 
the SFM, we explore how microscopic propagation mechanisms, medi-
ated by parameters such as interaction radius and response threshold, 
affect macroscopic decision-making and collective motion in crowd 
evacuation. Numerical simulations reveal several crucial findings: (1) 
Compared with the SFM, the proposed BC-SFM reproduces the spatio-
temporal dynamics of behavioral contagion more realistically, which 
enables faster redirection and reduces congestion near the blocked 
exit. (2) The intensities of interaction radius and response threshold 
regulate the speed and coordination of behavioral contagion, and their 
heterogeneity modulates contagion continuity, activation timing, and 
synchronization level in collective evasion maneuvers. (3) Different 
combinations of perceptual capacity and individual responsiveness lead 
to distinct contagion mechanisms, which in turn influence the escape 
efficiency and congestion level of evacuation dynamics.

This work provides valuable inspiration for understanding and man-
aging behavioral cascades in human crowds, and offers theoretical 
guidance for the design of evacuation strategies and swarm robotics. 
On the one hand, this model can support the development of real-time 
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crowd management systems in scenarios such as sports stadiums or 
festival events, where spontaneous crowd reactions are highly sensitive 
to local disruptions. By adjusting key contagion parameters, authorities 
can explore scenario-based interventions to optimize spatial layouts or 
route planning [48,49], and can also inform the placement of visual 
signage, auditory alerts, or localized guidance agents [50,51] to in-
fluence early responders and steer behavioral contagion toward safer 
evacuation patterns. On the other hand, beyond human evacuation, 
the modeling principles are also transferable to swarm robotics, such 
as drone fleets [52] or autonomous delivery systems [53]. The local 
communication and imitation mechanisms can be designed to sup-
port coordinated rerouting, obstacle avoidance, and emergent decision-
making [54]. In such systems, tuning contagion-inspired interaction 
rules is expected to enhance the adaptability and robustness of swarm 
robotics in dynamic and uncertain environments.

Despite its contributions, this work has several limitations that 
point toward future research directions. First, contagion parameters in 
this model, while empirically inspired by animal experiments, have 
not yet been calibrated with human data. This potentially limits its 
ability to predict real-world contagion dynamics in human crowds, 
and future work may address this limitation through controlled human 
experiments or virtual reality technology for more accurate parameter 
estimation and enhanced model reliability. Second, although our model 
characterizes basic contagion mechanisms, it does not yet account for 
higher-level social dynamics [25] such as role differentiation, hierarchy 
formation, and antagonistic interactions, all of which play critical roles 
in emergency evacuation situations. Future studies should aim to enrich 
contagion-movement coupling models by incorporating multimodal 
perception, adaptive decision-making rules, and empirically based psy-
chological factors. Furthermore, systematic validation using controlled 
experiments or real-world datasets will be essential to improve model 
realism and extend its applicability to practical crowd management.

CRediT authorship contribution statement

Wenhan Wu: Writing – original draft, Visualization, Validation, 
Supervision, Software, Methodology, Investigation, Formal analysis, 
Writing – review & editing. Wenfeng Yi: Writing – original draft, 
Validation, Resources, Project administration, Methodology, Funding 
acquisition, Conceptualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This research was supported by Science Foundation of China Uni-
versity of Petroleum, Beijing (No. 2462025YJRC020).

Data availability

Data will be made available on request.

References

[1] Dong H, Zhou M, Wang Q, Yang X, Wang F-Y. State-of-the-art pedestrian 
and evacuation dynamics. IEEE Trans Intell Transp Syst 2020;21(5):1849–66. 
http://dx.doi.org/10.1109/tits.2019.2915014.

[2] Bakhshian E, Martinez-Pastor B. Evaluating human behaviour during a disaster 
evacuation process: A literature review. J Traffic Transp Eng (English Edition) 
2023;10(4):485–507. http://dx.doi.org/10.1016/j.jtte.2023.04.002.

[3] Chen X, Treiber M, Kanagaraj V, Li H. Social force models for pedestrian traffic 
– state of the art. Transp Rev 2017;38(5):625–53. http://dx.doi.org/10.1080/
01441647.2017.1396265.
10 
[4] Li Y, Chen M, Dou Z, Zheng X, Cheng Y, Mebarki A. A review of cellular 
automata models for crowd evacuation. Phys A 2019;526:120752. http://dx.doi.
org/10.1016/j.physa.2019.03.117.

[5] Senanayake GP, Kieu M, Zou Y, Dirks K. Agent-based simulation for pedes-
trian evacuation: A systematic literature review. Int J Disaster Risk Reduct 
2024;111:104705. http://dx.doi.org/10.1016/j.ijdrr.2024.104705.

[6] Li S, Zhuang J, Shen S. A three-stage evacuation decision-making and be-
havior model for the onset of an attack. Transp Res Part C: Emerg Technol 
2017;79:119–35. http://dx.doi.org/10.1016/j.trc.2017.03.008.

[7] Zhou Z-X, Nakanishi W, Asakura Y. Route choice in the pedestrian evacuation: 
Microscopic formulation based on visual information. Phys A 2021;562:125313. 
http://dx.doi.org/10.1016/j.physa.2020.125313.

[8] Yi W, Wu W, Wang X, Zheng X. Modeling the mutual anticipation in 
human crowds with attention distractions. IEEE Trans Intell Transp Syst 
2023;24(9):10108–17. http://dx.doi.org/10.1109/tits.2023.3268315.

[9] Helbing D, Johansson A. Pedestrian, crowd and evacuation dynamics. In: 
Encyclopedia of complexity and systems science. Springer New York; 2009, p. 
6476–95. http://dx.doi.org/10.1007/978-0-387-30440-3_382.

[10] He Z, Shen K, Lan M, Weng W. The effects of dynamic multi-hazard risk 
assessment on evacuation strategies in chemical accidents. Reliab Eng Syst Saf 
2024;246:110044. http://dx.doi.org/10.1016/j.ress.2024.110044.

[11] Lu P, Li Y. Agent-based fire evacuation model using social learning theory 
and intelligent optimization algorithms. Reliab Eng Syst Saf 2025;260:111000. 
http://dx.doi.org/10.1016/j.ress.2025.111000.

[12] Zou H, Su H, Song S, Zhu J. Understanding human behaviors in crowds by 
imitating the decision-making process. Proc AAAI Conf Artif Intell 2018;32(1). 
http://dx.doi.org/10.1609/aaai.v32i1.12316.

[13] van Haeringen ES, Gerritsen C, Hindriks KV. Emotion contagion in agent-based 
simulations of crowds: a systematic review. Auton Agents Multi-Agent Syst 
2022;37(1). http://dx.doi.org/10.1007/s10458-022-09589-z.

[14] Ma Y, Lee EWM, Shi M, Yuen RKK. Spontaneous synchronization of motion 
in pedestrian crowds of different densities. Nat Hum Behav 2021;5(4):447–57. 
http://dx.doi.org/10.1038/s41562-020-00997-3.

[15] Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, Couzin ID. Revealing the 
hidden networks of interaction in mobile animal groups allows prediction of 
complex behavioral contagion. Proc Natl Acad Sci 2015;112(15):4690–5. http:
//dx.doi.org/10.1073/pnas.1420068112.

[16] Gallup AC, Hale JJ, Sumpter DJT, Garnier S, Kacelnik A, Krebs JR, et al. Visual 
attention and the acquisition of information in human crowds. Proc Natl Acad 
Sci 2012;109(19):7245–50. http://dx.doi.org/10.1073/pnas.1116141109.

[17] Múgica J, Torrents J, Cristín J, Puy A, Miguel MC, Pastor-Satorras R. Scale-
free behavioral cascades and effective leadership in schooling fish. Sci Rep 
2022;12(1). http://dx.doi.org/10.1038/s41598-022-14337-0.

[18] Helbing D, Molnár P. Social force model for pedestrian dynamics. Phys Rev E 
1995;51(5):4282–6. http://dx.doi.org/10.1103/physreve.51.4282.

[19] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. 
Nature 2000;407(6803):487–90. http://dx.doi.org/10.1038/35035023.

[20] Meng Q, Zhou M, Liu J, Dong H. Pedestrian evacuation with herding behavior 
in the view-limited condition. IEEE Trans Comput Soc Syst 2019;6(3):567–75. 
http://dx.doi.org/10.1109/tcss.2019.2915772.

[21] Wu W, Yi W, Wang X, Zheng X. A vision-driven model based on cognitive 
heuristics for simulating subgroup behaviors during evacuation. IEEE Trans 
Intell Transp Syst 2024;25(11):16048–58. http://dx.doi.org/10.1109/tits.2024.
3421626.

[22] Wu W, Chen M, Li J, Liu B, Zheng X. An extended social force model via 
pedestrian heterogeneity affecting the self-driven force. IEEE Trans Intell Transp 
Syst 2022;23(7):7974–86. http://dx.doi.org/10.1109/tits.2021.3074914.

[23] Wu W, Li J, Yi W, Zheng X. Modeling crowd evacuation via behav-
ioral heterogeneity-based social force model. IEEE Trans Intell Transp Syst 
2022;23(9):15476–86. http://dx.doi.org/10.1109/tits.2022.3140823.

[24] Cao RF, Lee EWM, Yuen ACY, Chan QN, Xie W, Shi M, et al. Development of an 
evacuation model considering the impact of stress variation on evacuees under 
fire emergency. Saf Sci 2021;138:105232. http://dx.doi.org/10.1016/j.ssci.2021.
105232.

[25] Templeton A, Xie H, Gwynne S, Hunt A, Thompson P, Köster G. Agent-based 
models of social behaviour and communication in evacuations: A systematic 
review. Saf Sci 2024;176:106520. http://dx.doi.org/10.1016/j.ssci.2024.106520.

[26] Guo C, Huo F, Li Y, Li C, Zhang J. An evacuation model considering pedes-
trian crowding and stampede under terrorist attacks. Reliab Eng Syst Saf 
2024;249:110230. http://dx.doi.org/10.1016/j.ress.2024.110230.

[27] Feng X, Jiang Y, Gai W. Rural community response to accidental toxic gas 
release: An individual emergency response model during self-organized evac-
uations. Reliab Eng Syst Saf 2024;248:110178. http://dx.doi.org/10.1016/j.ress.
2024.110178.

[28] Moussaïd M, Kapadia M, Thrash T, Sumner RW, Gross M, Helbing D, et al. Crowd 
behaviour during high-stress evacuations in an immersive virtual environment. 
J R Soc Interface 2016;13(122):20160414. http://dx.doi.org/10.1098/rsif.2016.
0414.

[29] Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective 
behaviour: from rapid responses to ontogeny and evolution. Phil Trans R Soc B 
2023;378(1874). http://dx.doi.org/10.1098/rstb.2022.0059.

http://dx.doi.org/10.1109/tits.2019.2915014
http://dx.doi.org/10.1016/j.jtte.2023.04.002
http://dx.doi.org/10.1080/01441647.2017.1396265
http://dx.doi.org/10.1080/01441647.2017.1396265
http://dx.doi.org/10.1080/01441647.2017.1396265
http://dx.doi.org/10.1016/j.physa.2019.03.117
http://dx.doi.org/10.1016/j.physa.2019.03.117
http://dx.doi.org/10.1016/j.physa.2019.03.117
http://dx.doi.org/10.1016/j.ijdrr.2024.104705
http://dx.doi.org/10.1016/j.trc.2017.03.008
http://dx.doi.org/10.1016/j.physa.2020.125313
http://dx.doi.org/10.1109/tits.2023.3268315
http://dx.doi.org/10.1007/978-0-387-30440-3_382
http://dx.doi.org/10.1016/j.ress.2024.110044
http://dx.doi.org/10.1016/j.ress.2025.111000
http://dx.doi.org/10.1609/aaai.v32i1.12316
http://dx.doi.org/10.1007/s10458-022-09589-z
http://dx.doi.org/10.1038/s41562-020-00997-3
http://dx.doi.org/10.1073/pnas.1420068112
http://dx.doi.org/10.1073/pnas.1420068112
http://dx.doi.org/10.1073/pnas.1420068112
http://dx.doi.org/10.1073/pnas.1116141109
http://dx.doi.org/10.1038/s41598-022-14337-0
http://dx.doi.org/10.1103/physreve.51.4282
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1109/tcss.2019.2915772
http://dx.doi.org/10.1109/tits.2024.3421626
http://dx.doi.org/10.1109/tits.2024.3421626
http://dx.doi.org/10.1109/tits.2024.3421626
http://dx.doi.org/10.1109/tits.2021.3074914
http://dx.doi.org/10.1109/tits.2022.3140823
http://dx.doi.org/10.1016/j.ssci.2021.105232
http://dx.doi.org/10.1016/j.ssci.2021.105232
http://dx.doi.org/10.1016/j.ssci.2021.105232
http://dx.doi.org/10.1016/j.ssci.2024.106520
http://dx.doi.org/10.1016/j.ress.2024.110230
http://dx.doi.org/10.1016/j.ress.2024.110178
http://dx.doi.org/10.1016/j.ress.2024.110178
http://dx.doi.org/10.1016/j.ress.2024.110178
http://dx.doi.org/10.1098/rsif.2016.0414
http://dx.doi.org/10.1098/rsif.2016.0414
http://dx.doi.org/10.1098/rsif.2016.0414
http://dx.doi.org/10.1098/rstb.2022.0059


W. Wu and W. Yi Reliability Engineering and System Safety 266 (2026) 111649 
[30] Nagy M, Ákos Z, Biro D, Vicsek T. Hierarchical group dynamics in pigeon flocks. 
Nature 2010;464(7290):890–3. http://dx.doi.org/10.1038/nature08891.

[31] Sosna MMG, Twomey CR, Bak-Coleman J, Poel W, Daniels BC, Romanczuk P, et 
al. Individual and collective encoding of risk in animal groups. Proc Natl Acad 
Sci 2019;116(41):20556–61. http://dx.doi.org/10.1073/pnas.1905585116.

[32] Levis D, Diaz-Guilera A, Pagonabarraga I, Starnini M. Flocking-enhanced so-
cial contagion. Phys Rev Res 2020;2(3):032056. http://dx.doi.org/10.1103/
physrevresearch.2.032056.

[33] Poel W, Daniels BC, Sosna MMG, Twomey CR, Leblanc SP, Couzin ID, et al. 
Subcritical escape waves in schooling fish. Sci Adv 2022;8(25). http://dx.doi.
org/10.1126/sciadv.abm6385.

[34] Wu W, Zheng X, Romanczuk P. Escape cascades as a behavioral contagion 
process with adaptive network dynamics. Phys Rev Res 2025;7(1):013300. http:
//dx.doi.org/10.1103/physrevresearch.7.013300.

[35] Liu Z, Liu T, Ma M, Hsu H, Ni Z, Chai Y. A perception-based emotion contagion 
model in crowd emergent evacuation simulation. Comput Animat Virtual Worlds 
2018;29(3–4). http://dx.doi.org/10.1002/cav.1817.

[36] Liu T, Liu Z, Chai Y, Wang J, Lin X, Huang P. Simulating evacuation crowd with 
emotion and personality. Artif Life Robot 2018;24(1):59–67. http://dx.doi.org/
10.1007/s10015-018-0459-5.

[37] Cao M, Zhang G, Wang M, Lu D, Liu H. A method of emotion contagion for 
crowd evacuation. Phys A 2017;483:250–8. http://dx.doi.org/10.1016/j.physa.
2017.04.137.

[38] Xu M, Xie X, Lv P, Niu J, Wang H, Li C, et al. Crowd behavior simulation with 
emotional contagion in unexpected multihazard situations. IEEE Trans Syst Man 
Cybern: Syst 2019;1–15. http://dx.doi.org/10.1109/tsmc.2019.2899047.

[39] Xu M, Li C, Lv P, Chen W, Deng Z, Zhou B, et al. Emotion-based crowd simulation 
model based on physical strength consumption for emergency scenarios. IEEE 
Trans Intell Transp Syst 2021;22(11):6977–91. http://dx.doi.org/10.1109/tits.
2020.3000607.

[40] Ren J, Mao Z, Gong M, Zuo S. Modified social force model considering 
emotional contagion for crowd evacuation simulation. Int J Disaster Risk Reduct 
2023;96:103902. http://dx.doi.org/10.1016/j.ijdrr.2023.103902.

[41] Mao Y, Yang S, Li Z, Li Y. Personality trait and group emotion contagion 
based crowd simulation for emergency evacuation. Multimedia Tools Appl 
2018;79(5–6):3077–104. http://dx.doi.org/10.1007/s11042-018-6069-3.

[42] Rincon J, Costa A, Villarrubia G, Julian V, Carrascosa C. Introducing dynamism 
in emotional agent societies. Neurocomputing 2018;272:27–39. http://dx.doi.
org/10.1016/j.neucom.2017.03.091.
11 
[43] Yi W, Wu W, Wang X, Zheng X. Phase transitions in pedestrian evacuation: 
A dynamic modeling with small-world networks. IEEE Trans Intell Transp Syst 
2024;25(11):18025–37. http://dx.doi.org/10.1109/tits.2024.3433420.

[44] Dodds PS, Watts DJ. Universal behavior in a generalized model of contagion. 
Phys Rev Lett 2004;92(21):218701. http://dx.doi.org/10.1103/physrevlett.92.
218701.

[45] Wirth TD, Dachner GC, Rio KW, Warren WH. Is the neighborhood of interaction 
in human crowds metric, topological, or visual? In: Borge-Holthoefer J, editor. 
PNAS Nexus 2023;2(5). http://dx.doi.org/10.1093/pnasnexus/pgad118.

[46] Feliciani C, Nishinari K. Measurement of congestion and intrinsic risk in 
pedestrian crowds. Transp Res Part C: Emerg Technol 2018;91:124–55. http:
//dx.doi.org/10.1016/j.trc.2018.03.027.

[47] Moussaïd M, Helbing D, Theraulaz G. How simple rules determine pedestrian 
behavior and crowd disasters. Proc Natl Acad Sci 2011;108(17):6884–8. http:
//dx.doi.org/10.1073/pnas.1016507108.

[48] Aldahlawi RY, Akbari V, Lawson G. A systematic review of methodologies for 
human behavior modelling and routing optimization in large-scale evacuation 
planning. Int J Disaster Risk Reduct 2024;110:104638. http://dx.doi.org/10.
1016/j.ijdrr.2024.104638.

[49] Yang Y, Xie D-F, Zhao X-M, Jia B. Two-stage stochastic optimization of passenger 
evacuation routes in metro stations considering stampede incidents. Reliab Eng 
Syst Saf 2025;260:111047. http://dx.doi.org/10.1016/j.ress.2025.111047.

[50] Zhang Z, Jia L, Qin Y. Optimal number and location planning of evacuation 
signage in public space. Saf Sci 2017;91:132–47. http://dx.doi.org/10.1016/j.
ssci.2016.07.021.

[51] Skjermo J, Moscoso C, Nilsson D, Frantzich H, Hoem ÅS, Arnesen P, et al. 
Analysis of visual and acoustic measures for self-evacuations in road tunnels 
using virtual reality. Fire Saf J 2024;148:104224. http://dx.doi.org/10.1016/j.
firesaf.2024.104224.

[52] Zhang K, Chermprayong P, Xiao F, Tzoumanikas D, Dams B, Kay S, et 
al. Aerial additive manufacturing with multiple autonomous robots. Nature 
2022;609(7928):709–17. http://dx.doi.org/10.1038/s41586-022-04988-4.

[53] Hossain M. Autonomous delivery robots: A literature review. IEEE Eng Manag 
Rev 2023;51(4):77–89. http://dx.doi.org/10.1109/emr.2023.3304848.

[54] Dorigo M, Theraulaz G, Trianni V. Swarm robotics: Past, present, and future 
[Point of View]. Proc IEEE 2021;109(7):1152–65. http://dx.doi.org/10.1109/
jproc.2021.3072740.

http://dx.doi.org/10.1038/nature08891
http://dx.doi.org/10.1073/pnas.1905585116
http://dx.doi.org/10.1103/physrevresearch.2.032056
http://dx.doi.org/10.1103/physrevresearch.2.032056
http://dx.doi.org/10.1103/physrevresearch.2.032056
http://dx.doi.org/10.1126/sciadv.abm6385
http://dx.doi.org/10.1126/sciadv.abm6385
http://dx.doi.org/10.1126/sciadv.abm6385
http://dx.doi.org/10.1103/physrevresearch.7.013300
http://dx.doi.org/10.1103/physrevresearch.7.013300
http://dx.doi.org/10.1103/physrevresearch.7.013300
http://dx.doi.org/10.1002/cav.1817
http://dx.doi.org/10.1007/s10015-018-0459-5
http://dx.doi.org/10.1007/s10015-018-0459-5
http://dx.doi.org/10.1007/s10015-018-0459-5
http://dx.doi.org/10.1016/j.physa.2017.04.137
http://dx.doi.org/10.1016/j.physa.2017.04.137
http://dx.doi.org/10.1016/j.physa.2017.04.137
http://dx.doi.org/10.1109/tsmc.2019.2899047
http://dx.doi.org/10.1109/tits.2020.3000607
http://dx.doi.org/10.1109/tits.2020.3000607
http://dx.doi.org/10.1109/tits.2020.3000607
http://dx.doi.org/10.1016/j.ijdrr.2023.103902
http://dx.doi.org/10.1007/s11042-018-6069-3
http://dx.doi.org/10.1016/j.neucom.2017.03.091
http://dx.doi.org/10.1016/j.neucom.2017.03.091
http://dx.doi.org/10.1016/j.neucom.2017.03.091
http://dx.doi.org/10.1109/tits.2024.3433420
http://dx.doi.org/10.1103/physrevlett.92.218701
http://dx.doi.org/10.1103/physrevlett.92.218701
http://dx.doi.org/10.1103/physrevlett.92.218701
http://dx.doi.org/10.1093/pnasnexus/pgad118
http://dx.doi.org/10.1016/j.trc.2018.03.027
http://dx.doi.org/10.1016/j.trc.2018.03.027
http://dx.doi.org/10.1016/j.trc.2018.03.027
http://dx.doi.org/10.1073/pnas.1016507108
http://dx.doi.org/10.1073/pnas.1016507108
http://dx.doi.org/10.1073/pnas.1016507108
http://dx.doi.org/10.1016/j.ijdrr.2024.104638
http://dx.doi.org/10.1016/j.ijdrr.2024.104638
http://dx.doi.org/10.1016/j.ijdrr.2024.104638
http://dx.doi.org/10.1016/j.ress.2025.111047
http://dx.doi.org/10.1016/j.ssci.2016.07.021
http://dx.doi.org/10.1016/j.ssci.2016.07.021
http://dx.doi.org/10.1016/j.ssci.2016.07.021
http://dx.doi.org/10.1016/j.firesaf.2024.104224
http://dx.doi.org/10.1016/j.firesaf.2024.104224
http://dx.doi.org/10.1016/j.firesaf.2024.104224
http://dx.doi.org/10.1038/s41586-022-04988-4
http://dx.doi.org/10.1109/emr.2023.3304848
http://dx.doi.org/10.1109/jproc.2021.3072740
http://dx.doi.org/10.1109/jproc.2021.3072740
http://dx.doi.org/10.1109/jproc.2021.3072740

	Modeling the dynamical process of behavioral contagion in human crowds during evacuation
	Introduction
	Model
	Behavioral Contagion Process
	Pedestrian Movement Dynamics

	Numerical Simulations
	Experiment Setup
	Performance Comparison Between SFM and BC-SFM
	Effects of Interaction Radius and Response Threshold on Behavioral Contagion
	Analysis of Evacuation Dynamics under Different Contagion Mechanisms

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


